Menu English Ukrainian Rosyjski Strona główna

Bezpłatna biblioteka techniczna dla hobbystów i profesjonalistów Bezpłatna biblioteka techniczna


ENCYKLOPEDIA RADIOELEKTRONIKI I INŻYNIERII ELEKTRYCZNEJ
Darmowa biblioteka / Schematy urządzeń radioelektronicznych i elektrycznych

Pasywna regulacja tonów. Encyklopedia elektroniki radiowej i elektrotechniki

Bezpłatna biblioteka techniczna

Encyklopedia radioelektroniki i elektrotechniki / Audio

Komentarze do artykułu Komentarze do artykułu

W tym artykule czytelnikom zaoferowano szereg różnych regulatorów tonów pod względem obwodów i funkcjonalności, które mogą być wykorzystane przez radioamatorów w rozwoju i modernizacji sprzętu do odtwarzania dźwięku.

Główną wadą popularnych ostatnio aktywnych regulatorów barwy jest zastosowanie głębokiego, zależnego od częstotliwości sprzężenia zwrotnego i dużych dodatkowych zniekształceń, które wprowadzają do kontrolowanego sygnału. Dlatego pożądane jest stosowanie pasywnych regulatorów w wysokiej jakości sprzęcie. To prawda, że ​​nie są pozbawione wad. Największym z nich jest znaczne tłumienie sygnału odpowiadające zakresowi regulacji. Ale ponieważ głębokość kontroli tonów w nowoczesnym sprzęcie do odtwarzania dźwięku jest niewielka (nie więcej niż 8 ... 10 dB), w większości przypadków nie jest wymagane wprowadzanie dodatkowych stopni wzmocnienia na ścieżce sygnału.

Inną, nie tak znaczącą wadą takich regulatorów jest konieczność stosowania rezystorów zmiennych z wykładniczą zależnością rezystancji od kąta obrotu silnika (grupa „B”), które zapewniają płynne sterowanie. Jednak prostota konstrukcji i wysokiej jakości wskaźniki nadal skłaniają projektantów do stosowania pasywnej kontroli tonów.

Należy zauważyć, że regulatory te wymagają małej impedancji wyjściowej poprzedzającego je stopnia i dużej impedancji wejściowej stopnia kolejnego.

Opracowany przez angielskiego inżyniera Baksandala w 1952 roku, kontrola tonu [1] stała się być może najpopularniejszym korektorem częstotliwości w elektroakustyce. Jego klasyczna wersja składa się z dwóch tworzących most sekcji filtrów pierwszego rzędu – niskiej częstotliwości R1C1R3C2R2 i wysokiej częstotliwości C3R5C4R6R7 (rys. 1a). Przybliżoną logarytmiczną charakterystykę amplitudowo-częstotliwościową (LAFC) takiego regulatora przedstawiono na ryc. 1b. Podano tam również obliczone zależności do wyznaczania stałych czasowych punktów przegięcia LAFC.

Pasywna kontrola tonów
Ris.1

Teoretycznie maksymalne osiągalne nachylenie odpowiedzi częstotliwościowej dla łączy pierwszego rzędu wynosi 6 dB na oktawę, ale z praktycznie zaimplementowanymi charakterystykami, ze względu na niewielką różnicę częstotliwości przegięcia (nie więcej niż dekadę) oraz wpływ poprzednich i kolejnych kaskad, nie przekracza 4 ... 5 dB na oktawę. Podczas regulacji tonu filtr Baksandala zmienia tylko nachylenie charakterystyki częstotliwościowej bez zmiany częstotliwości przegięcia. Tłumienie wprowadzone przez regulator przy średnich częstotliwościach jest określone przez stosunek n=R1/R3. Zakres regulacji odpowiedzi częstotliwościowej w tym przypadku zależy nie tylko od wartości tłumienia n, ale także od doboru częstotliwości przegięcia charakterystyki częstotliwościowej, dlatego aby ją zwiększyć, częstotliwość przegięcia jest ustawiana w obszarze średnich częstotliwości, który, z kolei jest obarczona wzajemnym wpływem dostosowań.

W tradycyjnej wersji rozważanego regulatora R1/R3=C2/C1==C4/C3=R5/R6=n, R2=R7=n-R1. W tym przypadku uzyskuje się przybliżoną zbieżność częstotliwości przegięcia charakterystyki częstotliwościowej w obszarze jej narastania i opadania (w ogólnym przypadku są one różne), co zapewnia względnie symetryczną regulację charakterystyki częstotliwościowej (tzw. spadek, nawet w tym przypadku, nieuchronnie okazuje się bardziej stromy i dłuższy). Przy powszechnie stosowanej n=10 (w tym przypadku minimalne wartości znamionowe elementu pokazano na ryc. 1, a-3, a) i doborze częstotliwości rozgraniczających w pobliżu 1 kHz, regulacja tonów przy częstotliwościach 100 Hz i 10 kHz w stosunku do częstotliwości 1 kHz wynosi ±14..18dB. Jak wspomniano powyżej, aby uzyskać płynną regulację, rezystory zmienne R2, R7 muszą mieć wykładniczą charakterystykę sterowania (grupa „B”), a ponadto, aby uzyskać liniową odpowiedź częstotliwościową w środkowym położeniu suwaków regulatora, stosunek rezystancji górnej i dolnej (zgodnie z obwodem) sekcji rezystorów zmiennych również powinien być równy n. Przy „Hyendzie” n=2...3, co odpowiada zakresowi regulacji ±4. ..8 dB, całkiem dopuszczalne jest stosowanie rezystorów zmiennych z liniową zależnością rezystancji od kąta obrotu silnika (grupa „A”), ale jednocześnie regulacja jest nieco zgrubna w obszarze spadek charakterystyki częstotliwościowej i rozciągnięty w obszarze wzrostu, a płaska charakterystyka częstotliwościowa nie jest uzyskiwana w żadnym wypadku w środkowej pozycji silników regulatora. Z drugiej strony lepiej dopasowana jest rezystancja sekcji podwójnych rezystorów zmiennych o liniowej zależności, co zmniejsza niedopasowanie odpowiedzi częstotliwościowej kanałów wzmacniacza stereo, dzięki czemu nierównomierną regulację można w tym przypadku uznać za akceptowalną.

Obecność rezystora R4 nie jest ważna, jego celem jest zmniejszenie wzajemnego oddziaływania łączy i zebranie odpowiedzi częstotliwościowej odpowiedzi częstotliwościowej w obszarze wyższych częstotliwości audio. Z reguły R4= =(0,3....1,2)'R1. Jak pokazano poniżej, w niektórych przypadkach można całkowicie zrezygnować. Aby zmniejszyć wpływ poprzedniego i kolejnych stopni na regulator, ich rezystancja wyjściowa Rout i wejściowa Rin powinna wynosić odpowiednio Rout < >R3.

Powyższa "podstawowa" wersja regulatora jest zwykle stosowana w wysokiej klasy sprzęcie radiowym. W sprzęcie AGD stosowana jest nieco uproszczona wersja (ryc. 2a). Przybliżoną logarytmiczną charakterystykę amplitudowo-częstotliwościową (LAFC) takiego regulatora przedstawiono na ryc. 2,6. Uproszczenie jego łącza wysokiej częstotliwości doprowadziło do pewnej niejasności regulacji w obszarze wyższych częstotliwości i do bardziej zauważalnego wpływu poprzednich i kolejnych kaskad na odpowiedź częstotliwościową w tym obszarze.

Pasywna kontrola tonów
Ris.2

Podobny korektor dla n = 2 (ze zmiennymi rezystorami grupy „A”) był szczególnie popularny w prostych wzmacniaczach amatorskich [2] z końca lat 60-tych - wczesnych 70-tych (głównie ze względu na małe tłumienie), ale wkrótce wartość n wzrosła do jego aktualną wartość. Wszystko, co zostało powiedziane powyżej odnośnie zakresu regulacji, dopasowania i doboru regulatorów, odnosi się również do uproszczonej wersji korektora.

Jeśli zrezygnujemy z wymogu symetrycznej regulacji odpowiedzi częstotliwościowej w obszarach ich wzrostu i spadku (nawiasem mówiąc, praktycznie nie ma potrzeby spadku), obwód można jeszcze bardziej uprościć (ryc. 3, a) . Pokazano na ryc. Z.b LACHH regulatora odpowiadają skrajnym położeniom silników rezystorów R2, R4. Zaletą takiego regulatora jest prostota, ale ponieważ wszystkie jego cechy są ze sobą powiązane, wskazane jest wybranie n = 3 ... 10 dla wygody regulacji. Wraz ze wzrostem n zwiększa się stromość wzniesienia, a maleje nachylenie spadku. Wszystko, co zostało powiedziane powyżej o tradycyjnych wersjach korektora Baksandal, w pełni odnosi się do tej niezwykle uproszczonej wersji.

Pasywna kontrola tonów
Ris.3

Jednak obwód kontroli tonu Baksandal i jego warianty w żadnym wypadku nie są jedyną możliwą implementacją pasywnej dwupasmowej kontroli tonu. Druga grupa regulatorów jest wykonana nie na podstawie mostków, ale na podstawie dzielnika napięcia zależnego od częstotliwości. Jako przykład eleganckiego rozwiązania obwodów regulatora można przytoczyć blok tonowy, który kiedyś był używany w różnych odmianach w lampowych wzmacniaczach gitarowych. „Atrakcją” tego regulatora jest zmiana częstotliwości przegięcia pasma przenoszenia w procesie regulacji barwy, co prowadzi do ciekawych efektów w brzmieniu „klasycznej” gitary elektrycznej. Jego podstawowy schemat pokazano na ryc. 4a, a przybliżone LFC pokazano na rys. 4,6. Podano tam również obliczone zależności do wyznaczania stałych czasowych punktów przegięcia.

Pasywna kontrola tonów
Ris.4

Łatwo zauważyć, że regulacja w obszarze niższych częstotliwości audio zmienia częstotliwości przegięcia bez zmiany nachylenia charakterystyki częstotliwościowej. Gdy suwak rezystora zmiennego R4 znajduje się w dolnej (zgodnie ze schematem) pozycji, pasmo przenoszenia przy niższych częstotliwościach jest liniowe. Gdy silnik porusza się w górę, pojawia się na nim wzniesienie, a punkt przegięcia w procesie regulacji przesuwa się w rejon niższych częstotliwości. Wraz z dalszym ruchem suwaka górna (zgodnie z układem) sekcja rezystora R4 zaczyna bocznikować rezystor R2, co powoduje przesunięcie punktu przegięcia wysokich częstotliwości na wyższe częstotliwości. Tak więc podczas regulacji wzrost niskich częstotliwości jest uzupełniany spadkiem średnich. Regulator częstotliwości o wyższej częstotliwości jest prostym filtrem pierwszego rzędu i nie ma żadnych specjalnych funkcji.

Na podstawie tego schematu można zbudować kilka opcji bloków barwy, które pozwalają dostosować pasmo przenoszenia w zakresie niskich i wysokich częstotliwości. Co więcej, w obszarze niższych częstotliwości możliwy jest zarówno wzrost, jak i spadek odpowiedzi częstotliwościowej, a przy wyższych częstotliwościach tylko wzrost.

Wariant bloku barwy z regulacją częstotliwości przegięcia odpowiedzi częstotliwościowej w obszarze niskich częstotliwości pokazano na ryc. 5,a, jego LACHH - na ryc. 5,6. Rezystor R2 kontroluje częstotliwość przegięcia odpowiedzi częstotliwościowej, a R5 - jej nachylenie. Połączone działanie regulatorów pozwala uzyskać znaczne limity i większą elastyczność sterowania.

Pasywna kontrola tonów
Ris.5

Schemat uproszczonej wersji bloku barwy pokazano na ryc. 6a, jego LACHH - na ryc. 6,6. Jest to w istocie hybryda ogniwa niskoczęstotliwościowego bloku barwy pokazanego na ryc. 3, a i łącze wysokiej częstotliwości bloku barwy pokazane na ryc. 4, a.

Pasywna kontrola tonów
Ris.6

Łącząc funkcje kontroli odpowiedzi częstotliwościowej w obszarach niskich i wysokich częstotliwości, można uzyskać prostą połączoną kontrolę tonów za pomocą jednego elementu sterującego, bardzo wygodnego w użyciu w sprzęcie radiowym i samochodowym. Jego schematyczny schemat pokazano na ryc. 7,a i LACHH - na ryc. 7b. W dolnym (zgodnie ze schematem) położeniu silnika rezystora zmiennego R1 pasmo przenoszenia jest bliskie liniowemu w całym zakresie częstotliwości. Przy przesunięciu w górę pojawia się wzrost przy niższych częstotliwościach, a punkt przegięcia niskich częstotliwości w procesie regulacji przesuwa się na niższe częstotliwości. Przy dalszym ruchu silnika górna (zgodnie ze schematem) sekcja rezystora R1 włącza kondensator C1, co prowadzi do wzrostu wyższych częstotliwości.

Pasywna kontrola tonów
Ris.7

Podczas wymiany rezystora zmiennego R1 na przełącznik (ryc. 8, a i 8, b) rozważany regulator zamienia się w najprostszy rejestr tonów (pozycja 1 - klasyczny; 2 - jazz; 3 - rock), popularny w latach 50. i lat 60-tych i ponownie wykorzystywane w korektorach magnetofonów radiowych i centrach muzycznych w latach 90-tych.

Pasywna kontrola tonów
Ris.8

Pomimo tego, że wydawałoby się, że o regulacji barwy powiedziano już wszystko, różnorodność pasywnych układów korekcyjnych nie ogranicza się do proponowanych opcji. Wiele zapomnianych rozwiązań obwodów przeżywa teraz odrodzenie na nowym poziomie jakościowym. Bardzo obiecująca jest na przykład regulacja głośności z oddzielną regulacją głośności dla niskich i wysokich częstotliwości [3].

literatura

  1. Shkrytek P. Przewodnik po obwodach dźwiękowych (przetłumaczony z języka niemieckiego). - M.: Mir, 1991, s. 151-153.
  2. Kryłow G. Szerokopasmowy ULF. - Radio, 1973, nr 9, ok. 56,57.
  3. Shikhatov A. Połączona jednostka sterująca odpowiedzią częstotliwościową. - Radio, 1993, nr 7, s. 16.

Autor: A. Shikhatov, Moskwa; Publikacja: N. Bolszakow, rf.atnn.ru

Zobacz inne artykuły Sekcja Audio.

Czytaj i pisz przydatne komentarze do tego artykułu.

<< Wstecz

Najnowsze wiadomości o nauce i technologii, nowa elektronika:

Maszyna do przerzedzania kwiatów w ogrodach 02.05.2024

We współczesnym rolnictwie postęp technologiczny ma na celu zwiększenie efektywności procesów pielęgnacji roślin. We Włoszech zaprezentowano innowacyjną maszynę do przerzedzania kwiatów Florix, zaprojektowaną z myślą o optymalizacji etapu zbioru. Narzędzie to zostało wyposażone w ruchome ramiona, co pozwala na łatwe dostosowanie go do potrzeb ogrodu. Operator może regulować prędkość cienkich drutów, sterując nimi z kabiny ciągnika za pomocą joysticka. Takie podejście znacznie zwiększa efektywność procesu przerzedzania kwiatów, dając możliwość indywidualnego dostosowania do specyficznych warunków ogrodu, a także odmiany i rodzaju uprawianych w nim owoców. Po dwóch latach testowania maszyny Florix na różnych rodzajach owoców wyniki były bardzo zachęcające. Rolnicy, tacy jak Filiberto Montanari, który używa maszyny Florix od kilku lat, zgłosili znaczną redukcję czasu i pracy potrzebnej do przerzedzania kwiatów. ... >>

Zaawansowany mikroskop na podczerwień 02.05.2024

Mikroskopy odgrywają ważną rolę w badaniach naukowych, umożliwiając naukowcom zagłębianie się w struktury i procesy niewidoczne dla oka. Jednak różne metody mikroskopii mają swoje ograniczenia, a wśród nich było ograniczenie rozdzielczości przy korzystaniu z zakresu podczerwieni. Jednak najnowsze osiągnięcia japońskich badaczy z Uniwersytetu Tokijskiego otwierają nowe perspektywy badania mikroświata. Naukowcy z Uniwersytetu Tokijskiego zaprezentowali nowy mikroskop, który zrewolucjonizuje możliwości mikroskopii w podczerwieni. Ten zaawansowany instrument pozwala zobaczyć wewnętrzne struktury żywych bakterii z niesamowitą wyrazistością w skali nanometrowej. Zazwyczaj ograniczenia mikroskopów średniej podczerwieni wynikają z niskiej rozdzielczości, ale najnowsze odkrycia japońskich badaczy przezwyciężają te ograniczenia. Zdaniem naukowców opracowany mikroskop umożliwia tworzenie obrazów o rozdzielczości do 120 nanometrów, czyli 30 razy większej niż rozdzielczość tradycyjnych mikroskopów. ... >>

Pułapka powietrzna na owady 01.05.2024

Rolnictwo jest jednym z kluczowych sektorów gospodarki, a zwalczanie szkodników stanowi integralną część tego procesu. Zespół naukowców z Indyjskiej Rady Badań Rolniczych i Centralnego Instytutu Badań nad Ziemniakami (ICAR-CPRI) w Shimla wymyślił innowacyjne rozwiązanie tego problemu – napędzaną wiatrem pułapkę powietrzną na owady. Urządzenie to eliminuje niedociągnięcia tradycyjnych metod zwalczania szkodników, dostarczając dane dotyczące populacji owadów w czasie rzeczywistym. Pułapka zasilana jest w całości energią wiatru, co czyni ją rozwiązaniem przyjaznym dla środowiska i niewymagającym zasilania. Jego unikalna konstrukcja umożliwia monitorowanie zarówno szkodliwych, jak i pożytecznych owadów, zapewniając pełny przegląd populacji na każdym obszarze rolniczym. „Oceniając docelowe szkodniki we właściwym czasie, możemy podjąć niezbędne środki w celu zwalczania zarówno szkodników, jak i chorób” – mówi Kapil ... >>

Przypadkowe wiadomości z Archiwum

Bateria podwójnego zastosowania 06.09.2023

Naukowcy opracowali unikalny hybrydowy system akumulatorów, który może nie tylko magazynować i dostarczać energię elektryczną, ale także generować przydatne związki chemiczne podczas pracy.

Konwencjonalne akumulatory magazynują energię w swoich elektrodach i po rozładowaniu przekazują ją do sieci elektrycznej. Inny rodzaj baterii, baterie redox, przechowują energię w substancjach chemicznych, które zmieniają się między dwoma stanami, pozostając wewnątrz baterii. System hybrydowy łączy obie te koncepcje, promując zarówno magazynowanie energii, jak i tworzenie dodatkowych substancji chemicznych.

Kluczem do rozwoju tej technologii jest zastosowanie w anodzie dwufunkcyjnego katalizatora metalicznego, wykonanego z jednoatomowego stopu rodu i miedzi. Katalizator ten umożliwia przekształcenie furfuralu zawartego w elektrolicie w alkohol furfurylowy podczas ładowania akumulatora, a podczas rozładowywania tworzy się kwas furynowy. W przypadku katody badacze zastosowali materiał wodorotlenku niklu domieszkowany kobaltem.

Ten innowacyjny system akumulatorów charakteryzuje się dużą gęstością energii i mocy oraz jest w stanie wytwarzać jednocześnie energię i związki chemiczne. Przykładowo magazynując 1 kWh energii, instalacja wytwarza 0,7 kg alkoholu furfurylowego i 1 kg kwasu furonowego. Technologia ta może mieć szeroki zakres zastosowań, od urządzeń domowych po procesy przemysłowe.

Inne ciekawe wiadomości:

▪ radioaktywne pożary lasów

▪ Inteligentna karta płatnicza BrilliantTS

▪ Projektor JVC DLA-Z4 1K

▪ Radio LTE Motorola TLK110 Wave

▪ Karuzela z latawcami

Wiadomości o nauce i technologii, nowa elektronika

 

Ciekawe materiały z bezpłatnej biblioteki technicznej:

▪ sekcja strony Narzędzia i mechanizmy dla rolnictwa. Wybór artykułu

▪ artykuł Pożar w pociągu. Podstawy bezpiecznego życia

▪ artykuł Jak rosną orzeszki ziemne? Szczegółowa odpowiedź

▪ artykuł Ślusarz do naprawy i konserwacji wentylacji. Standardowe instrukcje dotyczące ochrony pracy

▪ artykuł Tanie zapachy. Proste przepisy i porady

▪ artykuł Stabilizator napięcia z tranzystorem polowym z zabezpieczeniem przed przeciążeniem, 14-24/10 V 1 A. Encyklopedia elektroniki radiowej i elektrotechniki

Zostaw swój komentarz do tego artykułu:

Imię i nazwisko:


Email opcjonalny):


komentarz:





Wszystkie języki tej strony

Strona główna | biblioteka | Artykuły | Mapa stony | Recenzje witryn

www.diagram.com.ua

www.diagram.com.ua
2000-2024